对于耐磨板来说,生产加工中温度的变化将直接影响整个板材性能,所以一直以来都在研究耐磨板等温处理的效果,结果发现不同加热温度下,耐磨板的连续冷却转变曲线、微观组织、物相及相似结构相也都随之发生了变化。
耐磨板等温处理的研究手段包括了很多先进的技术,如光学显微镜、透射电子显微镜、X射线衍射仪及电子背散射衍射技术等。随着退火温度的升高,耐磨板中铁素体的相比例会逐渐降低,升高的是贝氏体,而其中残余的奥氏体则会以椭圆状和细条状分布在铁素体晶界及晶内。
当加热温度由完全奥氏体化温度降低到两相区内较高温度时,耐磨板连续冷却转变曲线中铁素体转变区左移。这时只要通过790℃加热保温,就可以得到含有铁素体、贝氏体和残留奥氏体的多相组织。
当保温温度进一步提高之后,工艺时间会直接影响到耐磨板中铁素体晶粒尺寸、铁素体量以及铁素体基体上的位错密度和沉淀析出量;随着贝氏体区保温时间的延长,耐磨板中残余奥氏体体积分数先增大后减少,残余奥氏体中碳含量增多。
当加热温度处在两相区范围内时,随着加热温度的降低,铁素体转变被推迟,奥氏体的含碳量也会有所不同。在相同的拉伸变形阶段,奥氏体转化率的增加速率不同,使得耐磨板连续冷却转变曲线右移。
另外,如果等温时间相同的话,等温温度越高,残余奥氏体中的碳含量越大,耐磨板中的铁素体、贝氏体晶界或者相界面1μm以上大颗粒奥氏体发生相变,相应的其性能也会有变化。
一是金属焊接时对缺陷的敏感性;
二是焊接接头在一定使用条件下的可靠性。
因此,良好的焊接性应该是焊接工艺简单,焊接时不易产生裂纹及各种缺陷,焊接处保持足够的强度和韧性。
在焊接过程中,焊锥和热影响区的金属要经过加热、熔化、结晶、冷却,态相变,以及应力、应变等一系列复杂过程的影响。
这些过程都发生在燥隐近的很小区域,而且其温度分布和化学成分都处于较不平衡的特殊状态。
以前,焊接结构所使用的钢材主要是耐磨板低碳钢,焊缝的质量是至关重要的,只要不出现问题,焊接热影响区也不会出现问题。
但随着低合金高强度钢的使用,这种情况发生了变化,焊接质量不仅仅决定于焊缝,同时也决定于焊接热影南区有时热影响区存在的问题,比焊缝更为复杂。
1.耐磨板易出现折叠。折叠是耐磨板表面形成的各种折线,这种缺陷往往贯穿整个产品的纵向。产生折叠的原因是由于劣质厂家追求高效率,压下量偏大,产生耳子,下一道轧制时就产生折叠,折叠的产品折弯后就会开裂,耐磨板的强度大下降。
2.耐磨板外表经常有麻面现象。麻面是由于轧槽磨损严重引起耐磨板表面不规则的凹凸不平的缺陷。由于劣质耐磨板厂家要追求利润,经常出现轧槽轧制较**标。
3.耐磨板表面易产生结疤。原因有两点:1.劣质耐磨板材质不均匀,杂质多。2。劣质材厂家导卫设备简陋,容易粘钢,这些杂质咬人轧辊后易产生结疤。
4.耐磨板表面易产生裂纹,原因是它的坯料是土坯,土坯气孔多,土坯在冷却的过程中由于受到热应力的作用,产生裂痕,耐磨板,经过轧制后就有裂纹。
5.耐磨板容易刮伤,原因是劣质材厂家设备简陋,易产生毛刺,刮伤耐磨板表面。深度刮伤降低耐磨板的强度。